Realization of a three-dimensional photonic topological insulator



[ad_1]

  • 1.

    Yablonovitch, E. Inhibited spontaneous emission in solid matter physics and electronics. Phys. Rev. Lett. 58, 2059-2062 (1987).

  • 2.

    John, S. Strong localization of photons in some disordered dielectric superlites. Phys. Rev. Lett. 58, 2486-2489 (1987).

  • 3.

    Yablonovitch, E., Gmitter, T. & Leung, K. Structure of photon belts: a faceted centered-cubic case that uses non-ateric atoms. Phys. Rev. Lett. 67, 2295-2298 (1991).

  • 4.

    Hasan, M. Z. & Kane, C. L. Topological isolators. Rev. Mod. Phys. 82, 3045-3067 (2010).

  • 5.

    Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057-1110 (2011).

  • 6.

    Lu, L., Joannopoulos, J. D. and Soljačić, M. Topological photonics. Nat. Foton. 8, 821-829 (2014).

  • 7.

    Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Foton. 11, 763-773 (2017).

  • 8.

    Ozawa, T. et al. Topological photonics. Preprint at https://arxiv.org/abs/1802.04173 (2018).

  • 9.

    Bahari, B. et al. Non-evaluation in topological cavities of arbitrary geometries. Science 358, 636-640 (2017).

  • 10.

    Bandres, M. A. et al. Topological laser insulator: experiments. Science 359, eaar4005 (2018).

  • 11.

    Hafezi, M., Demler, E.A., Lukin, M.D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907-912 (2011).

  • 12.

    Lin, S.-y. et al. A three-dimensional photonic crystal operating on infrared wavelengths. Nature 394, 251-253 (1998).

  • 13.

    Rinne, S. A., García-Santamaría, F. & Braun, P. V. Built cavities and waveguides in three-dimensional silicon photonic crystals. Nat. Foton. 2, 52-56 (2008).

  • 14.

    Wang, Z., Chong, Y., Joannopoulos, J. D., and Soljačić, M. Observation of unidirectional reverse scattering-immune topological electromagnetic states. Nature 461, 772-775 (2009).

  • 15.

    Khanikaev, A. B. et al. Photon topological insulators. Nat. Mater. 12, 233-239 (2013).

  • 16.

    Lu, L. et al. Experimental observation of Weyl points. Science 349, 622-624 (2015).

  • 17.

    Noh, J. et al. Experimental observation of optical Weyl points and Fermi surface states. Nat. Phys. 13, 611-617 (2017).

  • 18.

    Yang, B. et al. Ideal Weylove points and helical surface states in artificial photonic crystal structures. Science 359, 1013-1016 (2018).

  • 19.

    Yannopapas, V. Gapless surface states in the cavity of coupled cavities: photonic analogue of topological crystal insulators. Phys. Rev. B 84, 195126 (2011).

  • 20.

    Lu, L. et al. Symmetrically protected topological photonic crystal in three dimensions. Nat. Phys. 12, 337-340 (2016).

  • 21.

    Slobozhanyuk, A. et al. Three-dimensional all dielectric photon topological insulator. Nat. Foton. 11, 130-136 (2017).

  • 22.

    Lin, Q., Sun, X.-Q., Xiao, M., Zhang, S.-C. & Fan, S. Production of a three-dimensional photonic topological insulator using a two-dimensional circular resonator grille with a synthetic frequency dimension. Preprint at https://arxiv.org/abs/1802.02597 (2018).

  • 23.

    Ochiai, T. Gapless surface states originating from an inadvertently degenerate square band that touches on a three-dimensional tetragonal photonic crystal. Phys. Rev. A 96, 043842 (2017).

  • 24.

    Fu, L., Kane, C. L. and Mele, E. J. Topological isolators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

  • 25.

    Mong, R. S., Bardarson, J. H. and Moore, J. E. Quantum transport and two-gauge scaling at the surface of a weak topological insulator. Phys. Rev. Lett. 108, 076804 (2012).

  • 26.

    Ringel, Z., Kraus, Y. E. and Stern, A. The strong side of weak topological insulators. Phys. Rev. B 86, 045102 (2012).

  • 27.

    Pendry, J. B., Holden, A. J., Robbins, D. and Stewart, W. Magnetism from conductors and improved non-linear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075-2084 (1999).

  • 28.

    Barik, S. et al. Topological interface of quantum optics. Science 359, 666-668 (2018).

  • 29.

    Cheng, X. et al. Robust reconfigurable electromagnetic paths in a photon topological isolator. Nat. Mater. 15, 542-548 (2016).

  • 30.

    Marqués, R., Medina, F. & Rafii-El-Idrissi, R. The role of bianisotropy in negative permeability and left-handed metamaterials. Phys. Rev. B 65, 144440 (2002).

  • 31.

    Ma, T., Khanikaev, A. B., Mousavi, S. H. and Shvets, G. Control of electromagnetic waves around sharp corners: topologically protected photon transport in metallic guides. Phys. Rev. Lett. 114, 127401 (2015).

  • 32.

    Burckel, D. B. et al. Micrometer cubic unit cell 3D metamaterial layers. Adv. Mater. 22, 5053-5057 (2010).

  • 33.

    Süsstrunk, R. and Huber, S. D. Observation of phonological screw boundary states in a mechanical topological isolator. Science 349, 47-50 (2015).

  • 34.

    Guo, Q. et al. Three-dimensional photon Dirac points in metamaterials. Phys. Rev. Lett. 119, 213901 (2017).

  • 35.

    Wu, L.-H. & Hu, X. Scheme for attaining a topological photonic crystal using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

  • 36.

    Yves, S. et al. Crystalline metamaterials for topological properties on wavelength scales. Nat. Commun. 8, 16023 (2017).

  • [ad_2]

    Source link