Thursday , March 4 2021

Change in the future climate due to melt in Antarctica



  • 1.

    Paolo, F. S., Fricker, H. A. & Padman, L. The magnitude of loss from Antarctic ice shelves is accelerated. Science 348, 327-331 (2015).

  • 2.

    Wouters, B. et al. Dynamic dilution of glaciers on the southern Antarctic peninsula. Science 348, 899-903 (2015).

  • 3.

    Konrad, H. et al. Net withdrawal of grounding lines of Antarctic glaciers. Nat. Geosci. 11, 258-262 (2018).

  • 4.

    DeConto, R. M. and Pollard, D. Contribution of Antarctica to past and future rises of sea level. Nature 531, 591-597 (2016).

  • 5.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. Overview of CMIP5 and the design of the experiment. Bull. Am. Meteorol. Soc. 93, 485-498 (2012).

  • 6.

    Eyring, V. et al. Overview of the project and organizational design of the Phase 6 project (CMIP6) compared to pooled models. Geosci. Model Dev. 9, 1937-1958 (2016).

  • 7.

    Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. Accelerating the contribution of the Greenlandic and Antarctic ice sheets to rising sea levels. Geophys. Really. Lett. 38, L05503 (2011).

  • 8.

    Stouffer, R. J., Seidov, D. & Haupt, B. J. Climate response to external freshwater sources: North Atlantic towards the Southern Ocean. J. Clim. 20, 436-448 (2007).

  • 9.

    Fogwill, C. J., Phipps, S. J., Turney, C. S. M., and Golledge, N. R. The sensitivity of the southern ocean to an improved regional introduction of Antarctic ice plates. Earth Futur. 3, 317-329 (2015).

  • 10.

    Park, W. & Latif, M. Ensemble simulation of global warming with idealized antarctic meltwater. Clim. Dyn. https://doi.org/10.1007/s00382-018-4319-8 (2018).

  • 11.

    Bintanja, R., van Oldenborgh, G.J., Drijfhout, S. S., Wouters, B. and Katsman, C. A. An important role for ocean warming and an increase in ice melting in Antarctic sea ice. Nat. Geosci. 6, 376-379 (2013).

  • 12.

    Pauling, A. G., Smith, I. J., Langhorne, P. J., and Bitz, C. M. Time-dependent ice-water ice inserts: impacts on Antarctic sea ice and the southern ocean in the Earth's system model. Geophys. Really. Lett. 44, 10454-10461 (2017).

  • 13.

    Rhodes, C. J. Paris Conference on Climate Change in 2015: COP21. Sci. Prog. 99, 97-104 (2016).

  • 14.

    Oppenheimer, M. Global warming and stability of the Antarctic ice sheet. Nature 393, 325-332 (1998).

  • 15.

    Rignot, E. & Jacobs, S. Rapid bottom flooring, extended near the ground lines of Antarctic ice sheets. Science 296, 2020-2023 (2002).

  • 16.

    Shepherd, A., Wingham, D. and Rignot, E. The warm ocean erodes the western Antarctic ice sheet. Geophys. Really. Lett. 31, L23402 (2004).

  • 17.

    Obas, T., Abe-Ouchi, A., Kusahara, K., Hasumi, H. & Ohgaito, R. Results of basal melting of Antarctic ice shelves to the climatic effects of the last ice maxim and CO2 doubling. J. Clim. 30, 3473-3497 (2017).

  • 18.

    Aiken, C. M. and England, M. H. The sensitivity of the present climate to the moisture content of fresh water, associated with the loss of Antarctic sea ice. J. Clim. 21, 3936-3946 (2008).

  • 19.

    Bakker, P., Clark, P. U., Golledge, N. R., Schmittner, A. & Weber, M. E. The differences in the chalene climate extended by the centennial range extended by the Antarctic. Nature 541, 72-76 (2017).

  • 20.

    Swart, N. C. and Fyfe, J. C. Influence of the recent withdrawal of Antarctic ice sheets into simulated sea ice trends. Geophys. Really. Lett. 40, 4328-4332 (2013).

  • 21.

    Zhang, R. & Delworth, T. Simulated tropical response to a significant weakening of the Atlantic thermohaline. J. Clim. 18, 1853-1860 (2005).

  • 22.

    Cabré, A., Marinov, I. and Gnanadesikan, A. Global atmospheric teleconferencing and multidimensional climatic oscillations caused by convection of the Southern Ocean. J. Clim. 30, 8107-8126 (2017).

  • 23.

    Purich, A., Cai, W., England, M. H. & Cowan, T. Evidence for the connection between modeled trends in Antarctic sea ice and underestimated wind changes. Nat. Commun. 7, 10409 (2016).

  • 24.

    Polvani, L. M. and Smith, K. L. Can we observe natural variability observed trends of Antarctic sea ice? New model evidence from CMIP5. Geophys. Really. Lett. 40, 3195-3199 (2013).

  • 25.

    Haumann, F. A., Notz, D. & Schmidt, H. Anthropogenic influence on changes in Antarctic sea ice resulting from circulation. Geophys. Really. Lett. 41, 8429-8437 (2014).

  • 26.

    Merino, N. et al. The impact of the increasing release of Antarctic glacial waters on the regional ice cap in the Southern Ocean. Ocean Model. 121, 76-89 (2018).

  • 27.

    Bintanja, R., Van Oldenborgh, G. J. & Katsman, C. A. The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice. Ann. Glaciol. 56, 120-126 (2015).

  • 28.

    Shepherd, A. et al. Harmonized estimate of mass balance of ice sheets. Science 338, 1183-1189 (2012).

  • 29.

    Sutterley, T. C. et al. The mass loss of Amundsen's seamins of the Western Antarctic from four independent techniques. Geophys. Really. Lett. 41, 8421-8428 (2014).

  • 30.

    Pauling, A. G., Bitz, C. M., Smith, J. J. & Langhorne, P. J. The response of the Southern Ocean and the Antarctic Sea Ice to fresh ice water in the Earth's system model. J. Clim. 29, 1655-1672 (2016).

  • 31.

    Goddard, P. B., Dufour, C. O., Yin, J., Griffies, S. M., and Winton, M. CO2– the difficult oceanic warming of the Antarctic continental belt in the global climate model. J. Geophys. Really. Oceans 122, 8079-8101 (2017).

  • 32.

    Stewart, A. L. and Thompson, A. F. Transmission of the transport of warm deep-water deep-sea water across the Antarctic shelf. Geophys. Really. Lett. 42, 432-440 (2015).

  • 33.

    Silvano, A. et al. Refreshing with ice-cold water improves the melting of ice shelves and reduces the formation of Antarctic underwater. Sci. Adv. 4, eaap9467 (2018).

  • 34.

    Spence, P. et al. Local rapid warming of underwater waters of the West Antarctic with distant winds. Nat. Clim. Chang. 7, 595-603 (2017).

  • 35.

    Massom, R. A. et al. An Antarctic disintegration ice part triggered by sea ice and offshore losses. Nature 558, 383-389 (2018).

  • 36.

    Vizcaino, M. et al. Joint simulations of Greenland's Greenland and Climate Change to AD 2300. Geophys. Really. Lett. 42, 3927-3935 (2015).

  • 37.

    Sangiorgi, F. et al. Southern ocean heating and retreat of Wilkes Land ice sheets in central Miocene. Nat. Commun. 9, 317 (2018).

  • 38.

    Fyke, J., Sergeinko, O., Loftverstorm, M., Price, S. & Lenaerts, J. T. M. Overview of interactions and feedback between ice sheets and the soil system. Rev. Geophys. 56, 361-408 (2018).

  • 39.

    Stern, A. A., Adcroft, A. and Sergienko, O. The effects of the distribution of body size into an antarctic glacial stick in a global climate model. J. Geophys. Really. Oceans 121, 5773-5788 (2016).

  • 40.

    Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice field that melts around the Antarctic. Science 341, 266-270 (2013).

  • 41.

    Stammer, D. The response of the global ocean to Greenland and Antarctic ice melting. J. Geophys. Really. Oceans 113, C06022 (2008).

  • 42.

    Haid, V., Iovino, D. & Masina, S. The effects of freshwater changes on Antarctic sea ice in the sea ice and ocean model. Крисфера 11, 1387-1402 (2017).

  • 43.

    He, J., Winton, M., Vecchi, G., Jia, L. and Rugenstein, M. Transient climate sensitivity depends on the baseline climatic oceanic circulation. J. Clim. 30, 1493-1504 (2017).

  • 44.

    Swingedouw, D., Fichefet, T., Goosse, H. & Loutre, M. F. The impact of transitional freshwater discharges in the southern ocean on AMOC and climate. Clim. Dyn. 33, 365-381 (2009).

  • 45.

    Gregory, J. M. et al. Contribution to the Flux-Anomaly-Forced Model (FAFMIP) Comparison project in CMIP6: the study of climate change at sea and climate change at sea in response to CO2 to force. Geosci. Model Dev. 9, 3993-4017 (2016).

  • 46.

    Fetterer, F., Knowles, K., Meier, W., Savoie, M. & Windnagel, A. K. Sea ice index, version 3: sea ice extent. National Snow and Ice Data Center https://nsidc.org/data/G02135/versions/3 (2017).

  • 73.

    NOAA. Notice of Data 88-MGG-02, Digital Earth Surface https://www.ngdc.noaa.gov/mgg/global/etopo5.HTML (National Geophysical Data Center, Boulder, 1988).

  • 47.

    Gent, P. R. et al. Model of air-conditioning system in community version 4. J. Clim. 24, 4973-4991 (2011).

  • 48.

    Dunne, J. P. et al. GFDL's ESM2 globally interconnected systems of climatic-carbon terrestrial models. Part I: physical formulations and basic simulation properties. J. Clim. 25, 6646-6665 (2012).

  • 49.

    Dunne, J. P. et al. GFDL's ESM2 globally interconnected systems of climatic-carbon terrestrial models. Part II: Formation of the carbon system and simulation characteristics of the starting point. J. Clim. 26, 2247-2267 (2013).

  • 50.

    Griffies, S. Gent-McWilliams slipstream. J. Phys. Oceanogr. 28, 831-841 (1998).

  • 51.

    Stocker, T. et al. v Climate Change 2013: The Basics of Physical Science. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Stocker, T. F. et al.) 33-115 (Cambridge Univ. Press, Cambridge, 2013).

  • 52.

    Sallée, J. B. et al. Assessment of the ocean water mass circulation and features in CMIP5 models: historical bias and responsiveness. J. Geophys. Really. Oceans 118, 1830-1844 (2013).

  • 53.

    Shu, Q., Song, Z. and Qiao, F. The assessment of sea ice simulations in CMIP5 models. Крисфера 9, 399-409 (2015).

  • 54.

    Reintges, A., Martin, T., Latif, M. & Park, W. Physical control of the variability of the deep-oceanic zone in the South Ocean in the CMIP5 models and the Kiel Climatic Model. Geophys. Really. Lett. 44, 6951-6958 (2017).

  • 55.

    Gordon, A. Deep Antarctic Convection west of Maud. J. Phys. Oceanogr. 8, 600-612 (1978).

  • 56.

    de Lavergne, C., Palter, J. B., Galbraith, E. D., Bernardello, R. & Marinov, I. The cessation of deep convection in the open South Ocean under anthropogenic climate change. Nat. Clim. Chang. 4, 278-282 (2014).

  • 57.

    Pellichero, V., Sallee, J.-B., Schmidtko, S., Roquet, F. & Charrassin, J.-B. Oceans mixed layer under the sea ice of the Southern Ocean: seasonal cycle and coercion. J. Geophys. Really. Oceans 122, 1608-1633 (2017).

  • 58.

    Swart, N. C. and Fyfe, J. C. Observed and simulated changes in the southern hemisphere on the surface of the western wind. Geophys. Really. Lett. 39, L16711 (2012).

  • 59.

    Downes, S. M. & Hogg, A. M. The South Ocean Circulation and Well Compensation in CMIP5 Models. J. Clim. 26, 7198-7220 (2013).

  • 60.

    Frölicher, T. L. et al. The dominance of the southern ocean in anthropogenic carbon and thermal acceptance in the CMIP5 models. J. Clim. 28, 862-886 (2015).

  • 61.

    Verdy, A. & Mazloff, M. R. A model for assimilating data for the assessment of biogeochemistry in the Southern Ocean. J. Geophys. Really. Oceans 122, 6968-6988 (2017).

  • 62.

    Rodgers, K. B., Lin, J. & Froelicher, T. L. The emergence of multiple ocean ecosystem drivers in a large ensemble package with the Earth system model. Biogeosciences 12, 3301-3320 (2015).

  • 63.

    Wang, Z. et al. Atmospheric source of multi-decal bipolar hooks. Sci. Rep. 5, 8909 (2015).

  • 64.

    Meehl, GA, Arblaster, J. M., Bitz, C. M., Chung, C. T. Y. & Teng, H. The proliferation of sea ice in Antarctica between 2000 and 2014, conducted by the tropical Pacific decadal variability of the climate. Nat. Geosci. 9, 590-595 (2016).

  • 65.

    Depoorter, M. A. et al. Flowering of fluxes and basal levels of melt of Antarctic ice shelves. Nature 502, 89-92 (2013).

  • 66.

    Dupont, T. & Alley, R. Evaluation of the relevance of the ice shelf base to the ice stream. Geophys. Really. Lett. 32, L04503 (2005).

  • 67.

    Lazeroms, W. M. J., Jenkins, A., Gudmundsson, G. H. and van de Wal, R. S. W. Modeling current basal melting ratios for antarctic ice shelves using parameterization of floating layers of meltwater. Крисфера 12, 49-70 (2018).

  • 68.

    MacAyeal, D. R. v Oceania of the Antarctic continental belt (eds. Jacobs, S.) 133-143 (American Geophysical Union, Washington, 1985).

  • 69.

    Holland, P. R., Jenkins, A. & Holland, D. M. The reaction of basal melting of the ice plate to variations in the temperature of the oceans. J. Clim. 21, 2558-2572 (2008).

  • 70.

    Little, C. M., Gnanadesikan, A. & Oppenheimer, M. How morphology of ice shelves controls basal melting. J. Geophys. Really. Oceans 114, C12007 (2009).

  • 71.

    Goldberg, D. N. et al. Research on the interaction of ice and ocean with a fully integrated iceberg model: 2. Sensitivity to external forsing. J. Geophys. Really. Earth Surf. 117, F02038 (2012).

  • 72.

    Griffies, S. M. Elements of the modular ocean model (MOM). Report no. 7, https://github.com/mom-ocean/mom-ocean.github.io/blob/master/assets/pdfs/MOM5_elements.pdf (NOAA GFDL Ocean Group, 2012).


  • Source link